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Some gas dynamic relations for real gas flows in
the presence of heat transfer

E. A. ORUDZHALIYEV
M. Azizbekov Azerbaidzhan Institute of Petroleum and Chemistry, Baku, U.S.S.R.

(Received 25 February 1985 and in final form 11 May 1988)

Abstract—Based on thermodynamic differential equations some relations are derived which take into
account the nonideality of the gas, energy transfer and friction.

IN AN EARLIER paper [1] the present author suggested

the following relation:
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The quantities n and k/(ky—1) vary very little in
the course of gas motion, therefore their mean values,
7 and k/(k;—1), will be employed to integrate
relation (1) (for convenience the bar over the latter
quantity is omitted). Thus, integration will yield
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where dQ., is the external heat supplied, and dQ,, the
heat of frictional work. The power of the supplied
heat is W,, = dQ.,/ds, and the power of the friction
forces is Wi, = dQy/dt = dLg/dt, Wi, = dL/dt.

In the absence of technical work, i.e. at dL,., = 0,
the energy equation has the form
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When deriving the above equation, all the trans-
formations were made with a view to obtain relations
in terms of p and T and, generally, in what follows to
use the temperature ratio of specific heats k for real
gases. An insignificant variation of (kr—1)/k, sim-
plifies manipulations and ensures a sufficient accuracy
of integration.

Now, the integral of equation (4), i.e.
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will be expanded. Introducing the notation
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it is possible to write
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A number of transformations will give
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where (Z,)r, is taken at pressure p, and at the initial
temperature T, {2].
Substituting equation (6) into equation (2) yields

wi—wi

kr
-5 +R7cr_——1ﬁ(T2 —T)+RT\(Z:)r,—(Z))r])

= 2
-ZJ d0+Low+Le=0. (7)
w h

This is a very important relation representing the
energy equation of a real gas.

Often, when the problems of ideal gas flow in the
absence of heat transfer are considered, the following
relation {3] is used :

O

It is known that in an energetically isolated gas flow
the stagnation temperature is a constant quantity. In
the presence of heat transfer the quantity T, in equa-
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a  speed of sound in real gas [m s~ ']

a. critical velocity of real gas fm s~ ']

@y speed of sound in ideal gas [m s~

(@) critical velocity of ideal gas [m s~

C, isobaric heat capacity of real gas
Pkeg™ 'K~

F  tube cross-section fm?]

G gas flow rate [kgs™]

k  specific heat ratio of ideal gas, C,/C,

kr temperature index of real gas adiabatic,

(1—p/T@T/3p)]~"

pressure [N m~7]

gas constant [J kg~ ' K~

temperature [K]

specific volume [m® kg™ ']

oyt

NOMENCLATURE

w  gas velocity [ms™]
y  correcting factor, a/a,
Z  coefficient of compressibility.

Greek symbols
velocity factor

s

¢ correcting factor

écr acrfl (acr)id

p  density (kgm~7,
Subscripts

cr  critical

id ideal

5 entropy.

tion (8) is variable. When higher accuracy is required,
equation (8) is written as

T k-1
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where (T,),4 is the variable stagnation temperature.
For real gases the relation becomes more complex.
For this relation to be obtained, the following deri-
vations should be made.

As a result of the flow adiabatic stagnation, the
following replacements are to be made in equation

:
=po; /=T, py=p
(Zx)p,,r = (22)p,T; (22);01.?" = (Z)po.f!"'

The stagnation flow velocity will decrease from
wy = wtow,=0.Then,at L=0,L;=0anddQ =0
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In an earlier paper [4] an expression was obtained
for the equilibrium speed of sound in a real or a
dissociating gas. For the real gas it has the form
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The relationship between a and the speed of sound
in an ideal gas will be expressed as

(12)

a= yayg

where, as is known

ay = \/(kRT) (13)

and y is a correcting factor.
Solving equations (11)~(13) simultaneously gives
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On having introduced the Mach number M (=w/a)
and taking into account the fact that RT = a%ky?, it
is possible to rewrite equation (10) in the form

(14)
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The quantities T, and p,, are, respectively, the vari-
able stagnation temperature and pressure of a. gas
cooled while moving in a gas pipe-line.

Now, the stagnation parameters will be obtained
and expressed in terms of the velocity 4.

By virtue of equations (12) and (13}, the square of

the critical velocity is
al = y2kRT, an

or, since
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k
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it is possible to write
@ =ty =2 RTo.  (19)
k+1 :
Equations (17) and (19) yield
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When M =1, T in equation (15) should be equal
to T.. Having found the critical temperature from
equation (15) and substituted it into equation (20),
one obtains
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Since Ma+ Aa,,, equations (12), (13), and (19) yield
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The substitution of the latter relation into equation
(15) gives
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Correspondingly
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Now, the relation will be derived which charac-
terizes the change in gas pressure along a cylindrical
pipe in the presence of heat transfer.
According to the equation

pu=ZRT 24)
the variables in the process of heat removal are
Pox = (2}, 7, P0RT 25
and
= (2),.7pRT. (26)

Dividing the latter equation by the former, with equa-
tion (21) taken into account, gives
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The gas density is
G

In the tube section under consideration

k
= Zécr k +1 RTOJ:

or, according to equation (25)
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Having determined from this equation p,, and sub-
stituted it into equation (27) allowing for equation
(28), it is possible to express the change in gas pressure
along the pipe as
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Another important relation will also be derived with
the use of Bernoulli’s equation at L, = 0.
Taking into account the fact that

2

dL, = é;—Ddl

where ¢ is the friction coefficient in a pipe, d/ the
length of an elementary pipe section, and D the pipe
diameter, the Bernoulli equation can be written in the
form

®, d— +€—dl-
P
or
dp dw d/
pw2 +— +f'2-5 =0. (30)

For differentiation, the quantities (kr—1)/ks, &,
and »n can be sufficiently accurately regarded constant
because they change significantly in the course of gas
expansion. Moreover, for the convenience of differ-
entiation, equation (29) can be simplified taking into
consideration that there is a very small difference
within the square brackets, the more so that it is
multiplied by the very small quantity 1/7{(k,—1)/k4].
In view of the above, equation (29) takes on the form
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where

(Z)p,T = %[(Z)p,.r, + (Z)pz.Tz]'
Differentiation of equation (31) yields
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As is shown
G = pwF. (33)
Since
w = iqa,, 34)
dw da, di
Rl (35)
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Simultaneous solution of equations (30) and (32)-
(35) gives
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This is a very important relation for solving the gas
dynamic problems of real gas flows in the presence of
heat transfer.

With no heat transfer (a,. = a.,) and when applied
toanidealgas (= 1; &, = 1; kr = k; 2 = Ay), equa-
tion (36) undergoes integration and takes on the con-
ventional form for gas dynamics

1 1 ire 2k |
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Equation (36) cannot be integrated. It can only be
solved for specific cases. With the aid of a computer,
this equation can be used to determine the distribution
of the variable critical velocity a. along a pipe,
assuming in the first approximation that A = 44. In
the absence of heat transfer, this distribution is deter-
mined from relation (37). The validity of equation
(36) will be justified in the ensuing paper.

din
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QUELQUES RELATIONS DE LA DYNAMIQUE DES GAZ POUR DES ECOULEMENTS
DE GAZ REEL EN PRESENCE DE TRANSFERT THERMIQUE

Résumé—A partir des équations différentielles de la thermodynamique, quelques relations sont établies
qui prennent en compte la non idéalité des gaz, le transfert d’énergie et le frottement.

EINIGE GASDYNAMISCHE BEZIEHUNGEN FUR DIE STROMUNG REALER GASE
BEI GLEICHZEITIGER WARMEUBERTRAGUNG

Zusammenfassung—Auf der Grundlage thermodynamischer Differentialgleichungen werden einige Bezie-
hungen entwickelt, die das nicht-ideale Verhalten des Gases sowie die Ubertragung von Energie und Impuis
beriicksichtigen.

HEKOTOPBIE 3ABUCHMOCTH I'A30JAMHAMHUKH [J14 ITIOTOKO® PEAJIBHLIX [A30B
MPN HAJTUYHUHU TENJIOOBMEHA

Amsorams—Ha ocHose mupdepeHUMaNbHBIX ypaBHEHHI TEPMOIHMHAMHKH BBIBEIEHBI 32BHCHMOCTH C
Y46TOM HEMOEANBHOCTH, JHeProoSMeHa U TPEHHA.



