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Some gas dynamic relations for real gas flows in 
the presence of heat transfer 
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Abstract-Based on thermodynamic differential equations some relations are derived which take into 
account the nonideality of the gas, energy transfer and friction. 

IN AN EARLIER paper [l] the present author suggested 
the following relation : 

d$+ z 
0 T 

dp+R++(dr--y) 
T- P 

+dL,,,+d4 = 0. (1) 

The quantities q and kT/(kT- 1) vary very little in 
the course of gas motion, therefore their mean values, 
?j and kT/(kT- l), will be employed to integrate 
relation (1) (for convenience the bar over the latter 
quantity is omitted). Thus, integration will yield 

x=pu=f(P,T) 

it is possible to write 

dx = @Tdp+ (;ldT 

then 

or 

dT. (5) 

dQ = de.. +dQrr (3) 

where dQn is the external heat supplied, and dQr, the 
heat of frictional work. The power of the supplied 
heat is W, = dQ,,/dr, and the power of the friction 
forces is W, = dQ,/dt = dL,/dt, W, = dL.,,/dt. 

In the absence of technical work, i.e. at dL,, = 0, 
the energy equation has the form 

?I w, w:-w: ---_--+ 
CCC 2 

A number of transformations will give 

dp = RT, [(Z,)T, - (ZI)T,] (6) 

where (Z,),, is taken at pressure p2 and at the initial 
temperature T, [2]. 

Substituting equation (6) into equation (2) yields 

w:-w: 
- +~&iV2 2 - TI) -t-RT, W,),, -(z,)T,] 

+R$$(T,-T,). (4) 
I dQ+Ltec,,+Lr,=O. (7) 

When deriving the above equation, all the trans- 
formations were made with a view to obtain relations 
in terms of p and T and, generally, in what follows to 
use the temperature ratio of specific heats kT for real 
gases. An insignificant variation of (k,- 1)/k, sim- 
plifies manipulations and ensures a sufficient accuracy 
of integration. 

Now, the integral of equation (4), i.e. 

will be expanded. Introducing the notation 

This is a very important relation representing the 
energy equation of a real gas. 

Often, when the problems of ideal gas flow in the 
absence of heat transfer are considered, the following 
relation [3] is used : 

T 0 % id 
(8) 

It is known that in an energetically isolated gas flow 
the stagnation temperature is a constant quantity. In 
the presence of heat transfer the quantity To in equa- 

225 



NOMENCLATURE 

a speed of sound in real gas [m s- ‘1 
a, critical velocity of real gas [m s- ‘1 
aid speed of sound in ideal gas [m s- ‘1 
(a,)a critical velocity of ideal gas [m s- ‘1 
C, isobaric heat capacity of real gas 

[J kg-’ R-‘1 
F tube cross-section [m’] 
G gas Bow rate [kg s- ‘3 
k specific heat ratio of ideal gas, CP/Cu 

kr temperature index of real gas adiabatic, 

11 -P/U~~PP);l- ’ 

P pressure [N m- ‘1 
R gas constant [J kg- ’ K- ‘1 
T temperature [K] 
u specific volume [m’ kg- ‘1 

W gas velocity [m s- ‘1 

Y correcting factor, U/L&d 
2 coefficient of compressibility. 

Greek symbols 
1 f. velocity factor 
” correcting factor 

icr %iC%>id 

P density [kg m- ‘1. 

Subscripts 
cr critical 
id ideal 
s entropy. 
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tion (8) is variable. When higher accuracy is required, 
equation (8) is written as 

(9) 

where (7”o)id is the variable stagnation temperature. 
For real gases the relation becomes more complex. 
For this relation to be obtained, the following deri- 
vations should be made. 

As a result of the flow adiabatic stagnation, the 
following replacements are to be made in equation 

(7) : 

T-,--T,; pz=po; T,=T; p’=p 

fZt)pg = (Z2)p.T; (Zl)p*.T, = G3&J’ 

The stagnation flow velocity will decrease from 

WI =wtow,=O.Then,atL=O,Lr~==OanddQ=O 

or whence 

aid = JWT) (13) 

and Y is a correcting factor. 
Solving equations (1 1)-( 13) simultaneously gives 

y2 xi? 
22 

(14) 

On having introduced the Mach number M (= w/a) 
and taking into account the fact that RT = a2]ky2, it 
is possible to rewrite equation (10) in the form 

Since 

5=, PO 
Cy- I).+ 

T 0 7 

it is possible to write 

In an earlier paper [4] an expression was obtained 
for the equilibrium speed of sound in a real or a 
dissociating gas. For the real gas it has the form 

a=Z (11) 

The relationship between a and the speed of sound 
in an ideal gas will be expressed as 

a = YfZid (12) 

k,&- 1) 

- Ka&..T. - V-J. I}] p T . (16) 

The quantities Tel and pox are, respectively, the vari- 
able stagnation temperature and pressure of a gas 
cooled while moving in a gas pipe-line. 

Now, the stagnation parameters will be obtained 
and expressed in terms of the velocity E.. 

By virtue of equations (12) and (13), the square of 
the critical velocity is 

a,: = y$kRT, (17) 

where, as is known or. since 
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it is possible to write 

Equations (17) and (19) yield 

(20) 

When M = 1, T in equation (15) should be equal 
to T,. Having found the critical temperature from 
equation (15) and substituted it into equation (20), 
one obtains 

Since Ma+&, equations (12), (13), and (19) yield 

The substitution of the latter relation into equation 
(15) gives 

Correspondingly 

. (23) 

Now, the relation will be derived which charac- 
terizes the change in gas pressure along a cylindrical 
pipe in the presence of heat transfer. 

According to the equation 

pu = ZRT (24) 

the variables in the process of heat removal are 

pox = (z),o,r,~oxRTo.x (25) 

and 

P = (Z&.,PRT. (26 

Dividing the latter equation by the former, with aqua- 
tion (21) taken into account, gives 

x 1+x 1 : $$ i(z),.,- (z)Pa,r] 
-I 

1 
. (27) 

The gas density is 

G -- 
’ - FJ. d,, ’ (28) 

In the tube section under consideration 

or, according to equation (25) 

Having determined from this equation pox and sub- 
stituted it into equation (27) allowing for equation 
(28), it is possible to express the change in gas pressure 
along the pipe as 

Another important relation will also be derived with 
the use of Bernoulli’s equation at Ltsh = 0. 

Taking into account the fact that 

where C is the friction coefficient in a pipe, dl the 
length of an elementary pipe section, and D the pipe 
diameter, the Bernoulli equation can be written in the 
form 

dp w2 w2 
p+dT+iZDdl=O 

or 

S+$+c$=o. 

For differentiation, the quantities (kT- l)/kr, &, 
and rl can be sufficiently accurately regarded constant 
because they change significantly in the course of gas 
expansion. Moreover, for the convenience of differ- 
entiation, equation (29) can be simplified taking into 
consideration that there is a very small difference 
within the square brackets, the more so that it is 
multiplied by the very small quantity l/lf[(k,- 1)/k,]. 
In view of the above, equation (29) takes on the form 
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where 

Differentiation of equation (31) yields 

kfl da,, k+l dE. 
~~----g-acrp 

- f Bacr dL - k BE. da,, 
> 

(32) 

where 

As is shown 

Since 

G = pwF. 

w = iacr 

(31) 

1 .,k,-1 k+l 1 
1--+r--- 

r 2k i2 

1 .,k,-1 k+l 1 

acr dl 
dlnz= -~_d. (36) 

This is a very important relation for solving the gas 
dynamic problems of real gas flows in the presence of 
heat transfer. 

With no heat transfer (aim = acr) and when applied 
to an ideal gas (f = 1 ; <,, = 1 ; k, = k ; i. = Aid), equa- 

tion (36) undergoes integration and takes on the con- 
ventional form for gas dynamics 

1 1 ‘fd 2k 7- .2 _ ln = : L 
/. ild )-2id & k-t 1 ’ D ’ (37) 

Equation (36) cannot be integrated. It can only be 
solved for specific cases. With the aid of a computer, 
this equation can be used to determine the distribution 
of the variable critical velocity a,, along a pipe, 
assuming in the first approximation that i. = i.,,$. In 
the absence of heat transfer, this distribution is deter- 
mined from relation (37). The validity of equation 
(36) will be justified in the ensuing paper. 

(33) 
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QUELQUES RELATIONS DE LA DYNAMIQUE DES GAZ POUR DES ECOULEhlENTS 
DE GAZ REEL EN PRESENCE DE TRASSFERT THERMIQUE 

R&urn&--A partir des Cquations diffirentielles de la thermodynamique. quelques relations sont itablies 
qui prennent en compte la non idOalit& des gaz. le transfert d’inergie et le frottement. 

EINIGE GASDYNAMISCHE BEZIEHUNGEN FtiR DIE STROMUNG REALER GXSE 
BEI GLEICHZEITIGER WARMEGBERTRAGUNG 

Zusammenfassung-Auf der Grundlage thermodynamischer Differentialgleichungen werden einige Bezie- 
hungen entwickelt, die das nicht-ideale Verhalten des Gases sowie die Ubertragung von Energie und Impuls 

beriicksichtigen. 

HEKOTOPbIE 3ABMCHMOCTM TA3OAMHAMMKM AJlfi IIOTOKOO PEAJIbHbIX TA30B 
IIPM HAJ’IkiqMkf TEIlJlOOIjMEHA 

mama--Ha DCHOB~ )@f$epenuwnbabrx ypasHeH&iB TepMonHHaMwcH BbmeneHbI 3aBHCHMoCTH C 

y%TOM HeHJleRJIbHOCTH, 3Heproo6weHa H TpeHti% 


